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We compute the backscattered current in a double point-contact geometry of a quantum-Hall system at
filling fraction �=5 /2 as a function of bias voltage in the weak backscattering regime. We assume that the
system is in the universality class of either the Pfaffian or anti-Pfaffian state. When the number of charge e /4
quasiparticles in the interferometer is odd, there is no interference pattern. However, the coupling between a
charge e /4 quasiparticle and the edge causes it to be absorbed by the edge at low energies. Consequently, an
interference pattern appears at low bias voltages and temperatures, as if there were an even number of
quasiparticles in the interferometer. We relate this problem to that of a semi-infinite Ising model with a
boundary magnetic field. Using the methods of perturbed boundary conformal field theory, we give an exact
expression for this crossover of the interferometer as a function of bias voltage. Finally, we comment on the
possible relevance of our results to recent interference experiments.
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I. INTRODUCTION

A two point-contact interferometer1–3 is potentially a
valuable probe of the topological properties of quantum-Hall
states. If the observed state at �=5 /2 �Refs. 4–6� were
non-Abelian,7–10 there would be a very dramatic signature in
transport through a two point-contact interferometer.11–14 If
there is an even number of charge e /4 quasiparticles in the
interferometer then Aharonov-Bohm oscillations of the cur-
rent are observed as the area of the loop is varied. They are
due to interference between the two possible tunneling paths
for current-carrying charge e /4 quasiparticles. If there is an
odd number of quasiparticles in the loop then these
Aharonov-Bohm oscillations are not observed as a result of
the non-Abelian braiding of the current-carrying e /4 quasi-
particles with those in the bulk. �However, Aharonov-Bohm
oscillations with twice the period will still be observed due
to the current carried by charge e /2 quasiparticles.15� A re-
cent experiment16 may have observed this predicted effect.

In this experiment, a side gate is used to vary the area of
the quantum-Hall droplet in the interferometer. The current
oscillates as the area is varied. However, at certain values of
the side gate voltage, the interference pattern changes dra-
matically. According to the non-Abelian interferometry inter-
pretation, such a change occurs when the area is varied be-
yond a point at which one of the quasiparticles leaves the
interference loop. Then the e /4 quasiparticle number parity
in the interference loop changes, leading to a striking change
in the interference pattern. Close to a transition point in the
e /4 quasiparticle number parity, a quasiparticle comes close
to the edge of the quantum-Hall droplet and begins to inter-
act with the edge excitations. The leading coupling of the
e /4 quasiparticle to the edge is through the �resonant� tun-
neling of Majorana fermions from the edge to the zero mode
on the e /4 quasiparticle. This coupling makes it possible for
e /4 Aharonov-Bohm oscillations to be seen even when there

is an odd number of quasiparticles in the interference loop.
At an intuitive level, this can be understood in the following
way. For odd quasiparticle number, a topological qubit
straddles one of the point contacts and records when an e /4
quasiparticle takes that path; consequently the two paths do
not interfere and Aharonov-Bohm oscillations are not seen.
This qubit is flipped when a Majorana fermion tunnels from
the edge to a bulk zero mode in the interference loop,
thereby erasing the record and allowing quantum interfer-
ence. Over longer time scales, the topological qubit flips so
many times that it can no longer carry any information. This
eventually leads, at low energies and long-time scales, to the
absorption of the zero mode by the edge and, therefore, to
the effective removal of this quasiparticle from the interfer-
ence loop, as far as its non-Abelian braiding properties are
concerned. Thus, every bulk quasiparticle will appear to be
effectively absorbed by the edge if the interferometer is
probed at sufficiently low voltages and temperatures—but
“sufficiently low” will be exponentially small in the distance
of the quasiparticle from the edge, as we will see. Thus, the
effect of bulk-edge coupling will only be apparent when the
edge is close to a bulk e /4 quasiparticle. In this paper, we
analyze this coupling in detail, as it affects the behavior of a
two point-contact interferometer, with possible relevance to
the transition regions of the experiments of Ref. 16.

In Ref. 17, the coupling of a bulk e /4 quasiparticle to the
edge was formulated in terms of perturbed boundary confor-
mal field theory. It was shown that this problem could be
mapped to a semi-infinite Ising model in a boundary mag-
netic field. This type of “folded” formalism is often used to
solve problems involving interedge backscattering at a single
point contact �which is where the system is folded�. Here, we
instead fold the system about the point where the bulk qua-
siparticle interacts with the edge. The current can then be
computed to lowest order in the backscattering operators by
computing the expectation values away from the boundary of
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two operators in the folded theory. This allows us to solve
the bulk-edge coupling exactly but restricts us to a perturba-
tive treatment of interedge backscattering.

As we discuss below, in this folded formalism, the ab-
sence of e /4 quasiparticle interference for an odd number of
bulk quasiparticles corresponds to the vanishing of the one-
point function ���x��=0 when the boundary magnetic field
vanishes while the appearance of e /4 quasiparticle interfer-
ence for an even number of bulk quasiparticles corresponds
to ���x��=x−1/8 when the boundary magnetic field is infinite
�x is the distance to the boundary of the Ising model which is
assumed, for simplicity, to be the y axis�. For finite-boundary
magnetic field, the boundary conditions of the Ising model
cross over from free to fixed, which corresponds to the ab-
sorption of a bulk quasiparticle. Following the derivation of
the exact crossover function for the magnetization by Chat-
terjee and Zamolodchikov18 �and of the full boundary state
by Chatterjee19�, we compute the current through the inter-
ferometer to lowest order in the backscattering at the point
contacts, but treating the bulk-edge coupling exactly. Our
results agree with lowest-order perturbation theory in the
bulk-edge coupling13 and numerical solution of a lattice
model.20 When the point contacts are close together com-
pared to vn /e�V, where vn is the Majorana fermion edge
velocity, e�=e /4, and V is the source-drain voltage, the
current-voltage relation takes a particularly simple form.
When there is an even number of quasiparticles in the bulk,
one of which is close to the edge, an interesting nonequilib-
rium problem presents itself: suppose the internal topological
state of the bulk quasiparticles is fixed to an initial value;
what is its subsequent time evolution? This is considered
elsewhere.

II. MODEL

We now set up the calculation of the backscattered current
in a two point-contact interferometer to lowest order. The
Pfaffian and anti-Pfaffian cases are conceptually similar so
we focus on the Pfaffian for the sake of concreteness. The
edge theory of the Pfaffian state has a chiral bosonic charge
mode and a chiral neutral Majorana mode21–24

LPf
R ��,�� =

2

4�
�x���t + vc�x�� + i���t + ivn�x�� . �1�

Both modes propagate to the right �the left-moving version
of this action, LPf

R , has time-derivative terms with opposite
sign� but will have different velocities in general. The veloci-
ties of the charged and neutral modes are vc and vn, respec-
tively. Recent numerical calculations and experiments indi-
cate that vc�105 m /s while vn�vc /10 �see, for instance,
Refs. 25 and 26�. The electron operator and e /4 quasiparticle
operators are, respectively, �el=�ei�2� and �1/4=�ei�/2�2,
where � is the Ising spin field of the Majorana fermion
theory.24

In the interferometer geometry depicted in Fig. 1, the
edge modes are oppositely directed on the bottom and top
edges, which we done by the subscripts 1 and 2. The two
point contacts are at xa and xb, and the corresponding e /4
quasiparticle backscattering amplitudes are �a and �b. Ex-

perimental values16,26 of �xa−xb� can range from approxi-
mately 1 	m to 5 	m while ��a,b�2�0.1. In the absence of
backscattering at the point contacts or bulk-edge coupling,
the action of the device is

S0 =� dt� dx	LPf
R ��1,�1� + LPf

L ��2,�2�
 . �2�

When interedge backscattering is weak, we expect the
amplitude � for charge e /4 to be transferred from one edge
to the other to be larger than for higher charges ne /4.15 It is
also the most relevant backscattering operator in the renor-
malization group sense23,24 so we will focus on it. Since it is
relevant, its effective value grows as the temperature is de-
creased, eventually leaving the weak backscattering regime.
We assume that the temperature or voltage is high enough
that the system is still in the weak interedge backscattering
regime and a perturbative calculation is valid but still much
lower than the bulk energy gap. Following Refs. 1 and 14,
interedge backscattering leads to a term of the form

Sbackscatt =� dt	�ae−i
JtTa�t� + c.c.

+ �be2�i��/4�0−nq/8+n�/2�e−i
JtTb�t� + c.c.
 , �3�

where

Ta�t� = �1�xa,t��2�xa,t�e
i

�8
	�1�xa,t�−�2�xa,t�


�4�

and similarly for Tb�t�. The Josephson frequency for a charge
e /4 quasiparticle with source-drain voltage V is 
J=e�V
= eV

4 �in units in which �=1�. The difference in the magnetic
fluxes enclosed by the two trajectories around the interfer-

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

Γ21Γ

Γ2

Γ1

x=0

S

FIG. 1. �Color online� A double point-contact interferometer.
Edge quasiparticles tunnel at two point contacts with amplitudes �1

and �2, respectively. The interferometry area is changed by apply-
ing a voltage to gate S. A bulk quasiparticle is coupled to the bottom
edge by Majorana fermion tunneling. This setup can be reformu-
lated as two semi-infinite nonchiral edges or, equivalently, two
semi-infinite Ising models. One Ising model has fixed boundary
condition; the other had free boundary condition and a boundary
magnetic field.
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ometer is �. We have chosen a gauge in which the vector
potential is concentrated at the second point contact so that
� enters only through the second term above. nq is the total
electrical charge of the bulk quasiparticles, in units of e /4;
n�=0,1 is the Majorana fermion number in the interference
loop, modulo 2. The nq and n� terms in �b account for the
diagonal �in the fermion number basis� effects of quasiparti-
cle statistics. The product of right- and left-moving spin
fields in Eq. �4� must be handled with some care to account
for the fact that two charge e /4 quasiparticles �one on each
edge� can fuse in two different ways. The effect of the non-
Abelian braiding statistics of the bulk quasiparticles enters in
this way through the precise definition of Ta,b. Fortunately,
this can be handled in a simple way in a calculation to lowest
order in the backscattering operator, as we will see in the
next section.

We now consider the coupling between a bulk quasiparti-
cle and the edge. Suppose that one of the bulk quasiparticles
is close to the bottom edge, at x=x0 with xa�x0�xb, as
depicted in Fig. 1. Each bulk e /4 quasiparticle has a Majo-
rana fermion zero mode;27,28 we will denote the zero mode
associated with the e /4 quasiparticle close to the edge by �0.
Then, the leading coupling between the edge and this quasi-
particle is of the form

Sbulk-edge =� dt	�0�t�0 + 2ih�0�1�x0�
 . �5�

Here, 2h is the amplitude for a Majorana fermion to tunnel
from the edge to the zero mode �0. Thus, the total action for
a two point-contact interferometer with one or more quasi-
particles in the interference loop, one of which is close to the
bottom edge, is of the form

S = S0 + Sbackscattering + Sbulk-edge. �6�

However, this description is, at the moment, incomplete be-
cause we have not precisely defined the product of Ising spin
fields in Sbackscattering. We will do this in the next section but
first we will give the appropriate Kubo formulae for current
through the interferometer.

The current operator can be found from the commutator
of the backscattering Hamiltonian and the charge on one
edge

I�t� =
ie

4
	�ae−i
JtTa�t� − h.c.


+
ie

4
	�be2�i��/4�0−nq/8+n�/2�e−i
JtTb�t� − h.c.
 . �7�

To lowest order in perturbation theory, the backscattered cur-
rent is found to be

�I�t�� = − i�
−


t

dt��0�	I�t�,Hbackscatt�t��
�0� . �8�

In principle, the current must be computed using a nonequi-
librium technique, such as the Schwinger-Keldysh method,
when the voltage is finite. However, at first order in the back-
scattering operators, there is no difference between the
Schwinger-Keldysh expression and Eq. �8�.

At this order, the current naturally breaks into the sum of
three terms I= Ia+ Ib+ Iint where

Ia,b =
e

4
��a,b�2�

−


0

dtei
Jt��Ta,b�0�Ta,b
† �t�� − �Ta,b

† �0�Ta,b�t���

�9�

are the backscattered currents for each point contact indepen-
dently and, following Chamon et al.,1 we write the interfer-
ence term in the form

Iint =
e

4
�a�̃b

��
−


0

dtei
Jt��Ta�0�Tb
†�t�� − �Tb

†�0�Ta�t��� + c.c.

=
e

4
· 2 Re��a�̃b

�	P̃�
J� − P̃�− 
J�
� , �10�

where �̃b=�be2�i��/4�0−nq/8+n�/2�, and the imaginary part of
the response function is

P̃�
J� = �
−





dtei
Jt�Ta�0�Tb
†�t�� . �11�

Iint is due to interference between the process in which a
quasiparticle tunnels between the two edges at xa and the
process in which it continues to xa and tunnels there. As a
result, Iint depends on the magnetic flux and the number of
bulk quasiparticles between the two point contacts; it reflects
the non-Abelian statistics of quasiparticles. This is imple-
mented through the precise definition of the product of Ising
spin fields which appears in the backscattering operators, to
which we turn in the next section.

III. BACKSCATTERING OPERATORS AND
INTERFERENCE

We now review a few essential points in the discussion of
interedge backscattering in Refs. 23 and 24. In the chiral
Ising model, a pair of �s can fuse to either 1 or � �or any
linear combination of the two�. Consequently, when we con-
sider the correlation function of a string of 2n �chiral� �
fields at a single edge, there is not a unique answer but,
instead, a vector space of 2n−1 conformal blocks which are
defined by specifying the fusion channels of the �s �e.g., by
dividing them arbitrarily into n pairs and specifying how
each pair fuses; different pairings lead to different bases in
the vector space�.

When a charge e /4 quasiparticle backscatters from one
edge to another, a pair of � quasiparticles is created, one in
the non-Abelian sector of each edge �recall that a �, which is
the non-Abelian part of an e /4 quasiparticle, is its own an-
tiparticle�. When there is only a single point contact and all
bulk quasiparticles are far from the point contact, we can
take this pair of �s to fuse to 1 since the backscattering
process is a very small motion of a quasiparticle which does
not involve any braiding and, therefore, does not create a �.
An alternative way to understand this is to note that one can
choose a gauge in which the non-Abelian gauge field due to
bulk quasiparticles vanishes at the point contact. In this way,
we can give a precise meaning to operators such as Ta,b.
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However, when we compute perturbatively in the back-
scattering, we would like to know how successive � fields on
the same edge fuse. Fortunately, the condition that the pair of
�s which is created on opposite edges by a backscattering
event can be converted �using a feature of anyon systems
called the F matrix� into a condition on the fusion channels
of successive � fields on the same edge. This leads, accord-
ing to the arguments of Refs. 23 and 24, to a mapping of the
single point-contact problem to a Kondo-esque impurity
problem.

When there are two point contacts, the quasiparticle his-
tory associated with a backscattering process at one of the
point contacts must necessarily wind around the bulk quasi-
particles in the interferometer. Equivalently, the non-Abelian
gauge field due to bulk quasiparticles is nonvanishing at one
of the point contacts or along one of the edges between the
two point contacts; the simplest gauge is one in which the
gauge field is concentrated at one of the point contacts, say
contact b. If there is an even number of quasiparticles in the
interferometer, their effect can be encapsulated in an extra
phase n�� �dependent on the overall parity of the topological
qubits in the interference loop� which we have absorbed into
�b. However, as shown in Ref. 14, if there is an odd number
of quasiparticles in the loop, then the pair of �s which is
created by Tb must fuse to � instead of 1. �For the implica-
tions for current noise, see Ref. 29. For the corresponding
condition in the k=3 Read-Rezayi state, see Ref. 30.� This
makes no difference as far as local properties of that point
contact are concerned. �In fact, in the single point-contact
problem, we could have taken each backscattered pair to fuse
to � instead of to 1, which would correspond to a nonstand-
ard gauge choice. This would have no effect on any physical
property and would lead to the same Kondo-esque model.�

However, if we consider the interference between the
backscattering processes due to Ta and Tb when there is an
odd number of quasiparticles in the interference loop, it is
significant that the pair of �s created by the former fuse to 1
but those created by the latter fuse to �. If we consider the
current to lowest order in the backscattering, the interference
term Eq. �10� contains the expression

�Ta�0�Tb
†�t�� = �	�1�xa,0��2�xa,0�
1	�1�xb,t��2�xb,t�
��

= �	�1�xa,0��1�xb,t�
���	�2�xa,0��2�xb,t�
1�

+ 1 ↔ 2.

Here, we have used square brackets to denote the fusion
channels of pairs of � fields. The correlation function in the
first line factorizes, as shown on the second line, because we
are perturbing around the limit in which the edges are decou-
pled. This expression vanishes because �	�2�xa ,0��2�xb , t�
��
vanishes by fermion number parity conservation. However,
when a bulk quasiparticle is coupled to the edge according to
Eq. �5�, fermion number parity is no longer conserved. Thus,
this correlation function need not vanish and an interference
term can be present even for odd quasiparticle numbers.13,20

For instance, to lowest order in the tunneling amplitude h in
Eq. �5�, �Ta�0�Tb

†�t�� will contain a nonvanishing contribution
of the form13

h��0���1�x0,t��	�1�xa,0��1�xb,t�
���	�2�xa,0��2�xb,t�
1� .

As discussed in Ref. 13, this leads to a nonvanishing inter-
ference term for odd quasiparticle numbers with different
scaling properties �as a function of T ,V� than for even qua-
siparticle numbers. In the next section, we show how this
interference term can be computed exactly in h �but still to

lowest order in �a�̃b
��.

IV. MAPPING TO THE ISING MODEL WITH A
BOUNDARY

When there is an even number of e /4 quasiparticles in the
bulk of a Pfaffian or anti-Pfaffian droplet, the Majorana fer-
mions have antiperiodic boundary conditions. When there is
an odd number, the Majorana fermions have periodic bound-
ary conditions. This can be understood in terms of the clas-
sical critical two-dimensional �2D� Ising model in the fol-
lowing way.17 The droplet is “squashed” down so that the
bottom and top edges become the right- and left-moving
modes of the Ising model. The bulk is forgotten about, ex-
cept insofar as it affects the boundary conditions at the two
ends of the droplet, where right-moving modes are reflected
into left-moving ones and vice versa. Since there is no scale
in this problem, the boundary conditions must be confor-
mally invariant; in the Ising model, this means that the Ising
spins can either have free or fixed boundary conditions.
When there is an even number of quasiparticles in the bulk
and their combined topological qubit has a fixed fermion
number parity, there are fixed boundary conditions at both
ends of the droplet. When there is an odd number of quasi-
particles in the bulk, there is a free boundary condition at one
end of the strip and a fixed boundary condition at the other
end. A Majorana fermion acquires a minus sign when it goes
around a �; thus an odd number of � particles can change
antiperiodic boundary conditions to periodic. �For even e /4
quasiparticle numbers, every branch cut can begin and end at
a bulk quasiparticle, and no branch cuts need cross the edge.�
The branch cut emanating from a � can be moved anywhere
we like by a Z2 gauge transformation. The most convenient
place for our purposes is one of the ends of the squashed
droplet; at this end, the Ising spin has free boundary condi-
tion. By a Z2 gauge transformation, we could move the
branch cut to the other end. Interchanging the free and fixed
ends in this manner is simply a Kramers-Wannier duality
transformation. For details, see Ref. 17.

To apply this perspective to a two point-contact interfer-
ometer, we will assume that x0=0 and xa=−xb, which we can
arrange by a conformal transformation. Then, we fold the
interferometer about the point x=0, as depicted in Fig. 1. As
a result, the Majorana fermion field on the bottom edge,
�1�x�, which was purely a right-moving field on the line
−
�x�
 now has both right- and left-moving components,
�1R�x�=�1�x� and �1L�x�=�1�−x�, on the half line x�0. The
same holds for the top edge. For bulk-edge coupling h=0,
there is no scale in this problem, so the boundary conditions
at x=0 must be conformally invariant. If there is an odd
number of e /4 quasiparticles in the bulk, then there will be a
branch cut and, again, we are free to put his branch cut
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wherever we like. As shown in Fig. 1, we will run the branch
cut through the bottom edge at the point x=0. Thus, the
folded bottom edge is a semi-infinite Ising model with free
boundary condition at x=0 while the folded top edge is a
semi-infinite Ising model with fixed boundary condition at
x=0.

In computing the interference term in the backscattered
current, we face expressions such as

�	�1�xa,0��1�xb,t�
�� = �	�1R�xa,0��1L�xa,t�
��

�recall that xa=−xb�. According to Cardy’s analysis,31 this
product of right- and left-moving � fields can be combined
into a single nonchiral Ising spin field. For a given boundary
condition, a nonchiral one-point function can be expressed in
terms of a chiral two-point function in a definite fusion chan-
nel. �In general, it is a linear combination over fusion chan-
nels but in the Ising case it is a unique fusion channel.� For
free boundary condition, a nonchiral spin field can be written
as the product of chiral spin fields which fuse to �

�	�1R�xa,0��1L�xa,��
�� = ��1�z, z̄��free �12�

while, for fixed boundary condition, a nonchiral spin field
can be written as the product of chiral spin fields which fuse
to 1

�	�2R�xa,0��2L�xa,��
1� = ��2�z, z̄��fixed. �13�

On the right-hand sides of these equations, the nonchiral spin
fields are functions of z and z̄, which may be treated as
formally independent variables. For the computation of the
current, we take z= ixa and z̄=vn�− ixa.

Equations �12� and �13� can be understood intuitively fol-
lowing the discussion of Ref. 17. For odd quasiparticle num-
ber, there should be no branch cut anywhere so that �1R�0�
=�1L�0� and �2R�0�=�2L�0�. Meanwhile, free and fixed
boundary conditions correspond to �R�0�= ��L�0�. The
slight subtlety is that �R�0�=�L�0� corresponds to free
boundary condition and �R�0�=−�L�0� corresponds to fixed
boundary condition if the boundary of the Ising model is on
the upper-half plane and the boundary is the real axis. On the
bottom edge, this is precisely the identification which leads
to Eq. �12�. However, in conformally mapping the upper-half
plane to a strip, an additional minus sign enters so that, on
the bottom edge, �1R�0�=�1L�0� corresponds to fixed bound-
ary condition as in Eq. �13�.

The one-point function of the spin field is nonzero for
fixed boundary condition.

��2�z, z̄��fixed =
1

�z − z̄�1/8 . �14�

However, for free boundary condition

��1�z, z̄��free = 0. �15�

Thus, when these two correlation functions are multiplied
together in the computation of the interference term, we ob-
tain a vanishing result, as expected for an odd number of
quasiparticles.11–14 While the fixed boundary condition is
stable, the free boundary condition is unstable to perturbation
by a boundary magnetic field, which causes a flow to fixed

boundary condition. As discussed in Ref. 17, the boundary
magnetic field perturbation18,31 is precisely the coupling of a
bulk zero mode to the edge in Eq. �5�. Since the action re-
mains quadratic, even with this perturbation, it is possible to
solve it exactly to determine its effect.

As a result of the folding procedure, Eq. �5� now becomes

Sbulk-edge
folded =� dt��0�t�0 + ih�0	�1R�0� + �1L�0�
� . �16�

The equations of motion for �0, �1R, and �1L at x=0 are17

2�t�0 = ih	�1R�0� + �1L�0�
 , �17�

ivn�1R�0� = ivn�1L�0� + h�0, �18�

ivn�1L�0� = ivn�1R�0� − h�0. �19�

Consequently, the Fourier transforms satisfy

�R�x = 0,
� =

 + i
0


 − i
0
�L�x = 0,
� . �20�

Thus, we see that a branch cut develops at low energies, 

�h2 /2vn, so that it is as if the e /4 quasiparticle is absorbed
by the edge �thereby switching the quasiparticle number par-
ity to even, which requires a branch cut� at least as far as its
non-Abelian topological properties are concerned. According
to the correspondence of the previous paragraph, the emer-
gence of a branch cut is equivalent to the flow from free to
fixed boundary condition. In the presence of a boundary
magnetic field perturbation of the free boundary condition,
we will denote the right-hand side of Eq. �12� by

�	�1R�xa,0��1L�xa,t�
��S0+Sbulk−edge
= ��1�z, z̄��h. �21�

To summarize, according to the arguments of this section,
we can write

P̃�
J� = �
−





dtei
Jt	�2xa�2 − �vct�2 + � sgn�t�
−1/8

� ��1�z, z̄��h��2�z, z̄��fixed �22�

with z= ixa and z̄=vn�− ixa analytically continued to real time
t. The final factor in the first line comes from the bosonic
charged mode correlation functions. From Eq. �22�, the in-
terference term in the backscattered current is obtained via
Eq. �10�.

Although the action S0+Sbulk−edge is quadratic, the desired
correlation function, ��1�z , z̄��h, is complicated because the
spin field does not have a simple relationship to the Majo-
rana fermion—since it creates a branch cut for the Majorana
fermion, it is nonlocal with respect to it. Nevertheless, it can
be computed exactly, as shown by Chatterjee and
Zamolodchikov.18 We recapitulate their method in Appendix
A.

In order to compute the current, we need to combine Eq.
�22� with the result for ��1�z , z̄��h described in Appendix A.
However, there is one small subtlety: the correlation function
Eq. �25� is an imaginary-time expression which needs to be
analytically continued to real time. This is a little delicate
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because the imaginary-time-correlation function of chiral �
fields �1R�xa ,0��1L�xa ,����1�z , z̄� is multivalued. The more
serious multivaluedness, associated with non-Abelian statis-
tics, occurs in higher-point functions, and is handled by fix-
ing the fusion channel.23,24 However, even for fixed fusion
channel, there is a phase ambiguity. This type of ambiguity is
characteristic of chiral order and disorder operators, includ-
ing exponentials of chiral bosons ei�R. In the classical
statistical-mechanics context, this ambiguity disappears since
the combination �1�z , z̄� is single valued when z= �z̄�� �and
the non-Abelian ambiguity, when it is present, is eliminated
by taking a single-valued sum over fusion channels�. In the
quantum context, the particular combinations of such corre-
lation functions which enter physical quantities are single
valued. A simple example is the case of fixed boundary con-
dition, which is the h→
 limit of Eq. �25�. Then
��1�ixa ,vn�− ixa��= �vn�−2ixa�1/8. This is multivalued. How-
ever, in the computation of the current, �2�z , z̄� only enters
in the combination ��1�z , z̄��fixed��2�z , z̄��fixed= ��vn��2

+ �2xa�2�1/8. The real-time-correlation function will have real,
physical singularities on the light cone 2xa= �vnt, but it will
not be multivalued. Thus, we can avoid ambiguities by form-
ing the single-valued combinations which enter into physical
quantities before continuing to real time. Fortunately, the
typical route to calculating a response function, namely, to
compute the correlation function in imaginary time and then
make the substitution i
→
J+ i� �e.g., in Kubo formula cal-
culations using Matsubara frequencies�, deals only with such
combinations.

In the next section, we compute the current by treating the
bulk-edge coupling exactly. Before doing so, however, we
briefly review the result of Ref. 13, where the bulk-edge
coupling is treated to lowest order in perturbation theory.
Overbosch and Wen13 find �transcribed into our notation�

��1�z, z̄��h = h�
0

�

d��
�z − z̄�3/8

�z − ���1/2�z̄ − ���1/2 + . . . ,

where the “…” are terms which would be obtained from
higher orders in perturbation theory. Consequently, they find,
through Eq. �22�, that for vn��min�e�V,kBT� the backscat-
tered current is �their Eq. �18��

Iint �
h

T
F1�e�V/kBT�Re��a�̃b

�� , �23�

where F1 is a scaling function. In the zero-temperature limit,
this is

Iint �
h

V
Re��a�̃b

�� . �24�

In the next section we compute ��1�z , z̄��h exactly rather than
to lowest order in perturbation theory. Our result agrees with
theirs for vn� /e�V small, where their result is expected to be
valid, and also captures the physics of the crossover to the
large vn� /e�V regime, which is beyond their perturbative
treatment.

V. CROSSOVER SCALING FUNCTION FOR THE
CURRENT THROUGH THE INTERFEROMETER

As explained in Appendix A, the Ising spin field one-point
function for finite-boundary magnetic field takes the form

��1�w,w̄�� = �1/221/4y3/8U
1

2
,1,y� , �25�

where y=−i��w− w̄�=��2xa+ ivn��, �=h2 /2vn
2, and

U� 1
2 ,1 ,y� is the confluent hypergeometric function of the

second kind, discussed briefly in Appendix A. As discussed
in the previous section, we combine Eqs. �22� and �25�, re-
maining in imaginary time. We have

P̃�
� = �
−





dtei
�	�vc��2 + �2xa�2
−1/8 � �vn� + 2ixa�−1/8�vn�

− 2ixa�3/8 � �1/221/4 � U
1

2
,1,��2xa + ivn��� . �26�

As mentioned in the previous section, individual factors in
the integral have ambiguities. However, their combination

does not. Thus, we use Eq. �26� to compute P̃�
� and then
take i
→
J+ i�. From the asymptotic form of the confluent
hypergeometric function �see Appendix A�, U� 1

2 ,1 ,��2xa
+ ivn���→ 	��2xa+ ivn��
−1/2, we see that the system crosses
over to the even quasiparticle number case as � is increased
or as 
J→0.

Note that Eq. �25� holds for arbitraries w and w̄, so it is
not important that we have put the bulk quasiparticle halfway
between the two point contacts—in fact, we could have
taken it to be anywhere between them. As the bulk quasipar-
ticle passes through one of the point contacts, the system
changes discontinuously from the odd to the even quasipar-
ticle number case so long as we treat the point contact as if it
were truly a point �and so long as we assume that the bulk
quasiparticle couples to the edge at a single point�. Of course
in reality, interedge backscattering occurs along a short sec-
tion of the two edges, so the discontinuity is smoothed out.
Furthermore, when the bulk quasiparticle is at one of the
contacts, one should consider other physical effects, such as
the interaction between the localized quasiparticle and the
tunneling quasiparticles.

The crossover of the current I�V� between odd and even
quasiparticle numbers can be seen analytically in the limit of
low voltages, vn�2xa
J, since we can drop the xa depen-
dence, so that Eq. �26� simplifies considerably. Using the
integral representation of U� 1

2 ,1 ,y�, valid for Re�y��0,
given in Eq. �A22�

U�a,b,y� =
1

��a��0




dte−tyta−1�1 + t�b−a−1

the integral can be performed:
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P̃�
� = �
−





dtei
�
vn

vc
�1/4

�1/221/4U
1

2
,1,��2xa + ivn���

= 2�1/2�1/2
vn

vc
�1/4 ��
�

	
�vn� + 
�
1/2 . �27�

Substituting i
→e�V+ i�, we see that for e�V�vn�, the in-
terference term has voltage dependence �h /V, as calculated
perturbatively in Ref. 13. However, for e�V�vn�, the inter-
ference term is �1 /V1/2—i.e., scales the same way with volt-
age as the separate contributions from each point contact, Ia
and Ib—and is independent of h. Thus, as expected, the Ising
model crosses over from free to fixed boundary conditions,
which is reflected in the interferometer as a crossover from
odd to even quasiparticle numbers. The total current, includ-
ing the individual contact and interference terms is

Itotal = �1/2e����a
2� + ��b�2��vnvc�−1/4sgn�V��e��V��−1/2

+ 2�1/2e�
vn

vc
�1/4

�1/2 Re� �a�̃b
� sgn�V�

	e�V�ivn� + e�V�
1/2� .

�28�

This regime, vn�2xa
J, is accessible to experiments �e.g.,
those of Refs. 16 and 26� since 2xa�1 	m compared to
vn /e�V�10 	m for V�1 	V. In this regime, vn /xa is
much larger than the other energy scales and is unimportant
for the crossover between odd and even quasiparticle num-
bers, which occurs when vn�=h2 /2vn is increased until it
approaches e�V, as may be seen from Eq. �28�. �Or, con-
versely, when the voltage is decreased until it approaches
h2 /2vn�.

However, for larger voltages V�10–100 	V and/or
larger interferometers 2xa�10 	m, which are also experi-
mentally accessible �see Ref. 26�, oscillations with voltage
will be observed for even quasiparticle number, as shown,
for instance, in Fig. 3 of Ref. 14. Therefore the crossover to
the even quasiparticle number case will be more compli-

cated. For an odd number of quasiparticles in the interferom-
eter, one of which is close to an edge, oscillations are seen,
but they are small for ��1 /xa, as shown in Fig. 2. For �
�xa, on the other hand, the interference term in the current
approaches the even quasiparticle number case computed in
Ref. 14. �Note that the differential conductance, rather than
the current, is plotted in Ref. 14.� In this figure, we have
taken nonzero temperature T=0.1

�vn

2xae� �see below for more
on the role of nonzero temperature�. For V=1 	V and 2xa
=1 	m, this is T�10 mK which is a low but accessible
temperature. �Willett et al.’s experiments,16 for instance, are
done at 25 mK.� The oscillations will be washed out by
higher temperatures.

There are “fast” oscillations with period in V given
roughly by 8�

exa
�1 /vn+1 /vc�−1 and “slow” ones with larger

period, 8�
exa

�1 /vn−1 /vc�−1. If vc�vn the two frequencies will
be close in value, so “beating” will be observed, as in the
upper panel of Fig. 2. However, if the two velocities are
close in value, the two frequencies are very different and
beating will not be observed. Only the fast oscillations, with
period � 8�

exa
�1 /vn+1 /vc�−1, will be visible over reasonable

ranges of voltage.
To see how the even quasiparticle number case is ap-

proached, it is useful to compare Iint�V� for finite � to Iint�V�
at �=
, where it is equal to its value in the even quasiparti-
cle number case. If e�V is not much smaller than vn /xa, this
will occur in a more complicated way than in Eq. �28�. For
example, the nodes in the oscillations move as � is varied.
Thus, if the voltage is near a nodal point in Iint�V�, the cur-
rent will not approach its �→
 value monotonically, as
shown in Fig. 3.

Since the preceding formulas were computed perturba-
tively in the interedge backscattering operators, they are only
valid for voltages which are not too small, i.e., so long as
��a,b�2�e�V�−1/2�1. Thus, the crossover described above will
be observable if there is a regime ��a,b�4�e�V�

h2

vn
�here, we

have substituted �=h2 /2vn
2�. However, it is possible to go to

voltages lower than ��a,b�4 while still remaining in the weak-

FIG. 2. The interference term in the current as a function of applied voltage at low temperature, for vn=0.1vc �left panel� and vn

=0.75vc �right panel�. The three curves in each are three different bulk-edge coupling strengths �=h2 /2vn
2, given in units of 1 /xa, the inverse

of the separation between the point contacts. The voltages is measured in units of �vn /2xae�. In the left panel, high-frequency oscillations
are visible due to beating between the two velocities. In the right panel, vc−vn is too small for the corresponding beating to be easily detected
by eye over this range of voltages. As � is increased, the curves approach the even quasiparticle case computed in Ref. 14.
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backscattering regime if the temperature is finite since kBT
will then cut off the flow of �a,b.

Finite-temperature correlation functions can be obtained
from zero-temperature ones such as Eq. �25� by a conformal
map from the half plane to the half cylinder. This amounts to
the following substitution:

� + i�t � x/v� → �sin��T	� + i�t � x/v�
���T . �29�

Since the charged and neutral mode velocities are different,
we apply such a substitution separately to the charged and
neutral sectors of the theory, which we can do only because
they are decoupled in the weak backscattering limit. The I
−V curves shown in Fig. 2 are computed at small but non-
zero temperature. �The temperature acts as an infrared regu-
lator since the current diverges at as V→0 if T=0 when the
current is calculated to lowest order in the backscattering.
Therefore a finite temperature is helpful.�

VI. DISCUSSION

Until very recently, the evidence that the �=5 /2 state is in
the universality class of either the Moore-Read Pfaffian
state7 or the anti-Pfaffian state32,33 was derived entirely from
numerical solutions of small systems.34,35 However, recent
point-contact tunneling36 and shot-noise37 experiments are
consistent with these non-Abelian states. Even more recently,
measurements16 with a two point-contact interferometer ap-
pear consistent with the odd-even effect.11,12 In this paper,
we have computed how the coupling of a bulk e /4 quasipar-
ticle to the edge leads to a crossover between the odd and
even quasiparticle number regimes. Our results may be rel-
evant to the transition regime between different quasiparticle
numbers in the experiment of Ref. 16. We have made spe-
cific predictions in Eq. �28� for how the interference term
scales with voltage and temperature when there is appre-
ciable bulk-edge coupling. If the transition regions can be
studied as a function of temperature and voltage, a detailed
comparison may be possible.

Following Willett et al.,16 let’s assume that ��=c�Vs for
some constant c, where Vs is the sidegate voltage. When a

bulk quasiparticle is close to the edge, h will be large, the
dependence of h on Vg will be complicated. However, for
some range of Vs, h will be approximately h�e−r/�, where r
is the distance to the edge and � is a length scale correspond-
ing to the size of the Majorana bound state at the bulk e /4
quasiparticle. If r=r0−bVs, then one might expect h=h0ebVs

for some h0, b. We take Willett et al.’s c and choose h0 ,b so
that the quasiparticle is effectively absorbed by the edge after
�5 periods. To compare with the results of Ref. 16, we must
add to Eq. �28� the contribution of charge e /2 quasiparticles

I�e/2� =
e

2

2�

vc
���a

e/2�2 + ��b
e/2�2�

+ 2
e

2

2�

vc
Re��a

e/2��b
e/2��e2�i��/2�0−nq/4�� . �30�

If we assume that the backscattered e /2 quasiparticle contri-
bution to the current is half as large as the �large-� limit of
the� e /4 contribution �although this is a somewhat question-
able assumption in general, it may hold over a range of tem-
peratures, see, e.g., Ref. 15�, then we can obtain the total
backscattered current as a function of Vs, as shown in Fig. 4.
A striking feature of this plot is that, for large h, the e /2
oscillation is masked by the larger e /4 oscillation. We em-
phasize that the amplitude of the e /2 oscillation is not chang-
ing with Vs, as may be seen from Eq. �30�; the apparent
suppression of the e /2 oscillation as the amplitude of the e /4
oscillation increases is illusory. This is reminiscent of a sa-
lient feature of Willett et al.’s16 data: in the regions in which
e /4 oscillations are visible, e /2 oscillations are often barely,
if at all, visible. The apparent disappearance of the e /2 os-
cillation in Fig. 4 results, in part, from the � /4 phase shift of
the e /4 oscillation in Eq. �28�, which helps it submerge the
smaller e /2 oscillation. It is amusing to note that if we as-
sume that h increases even more sharply with Vs, e.g., h

=h0ebVs
2
, then the e /2 oscillation seemingly disappears even

more suddenly �Fig. 5�.
In this paper, we have focussed on the case of an odd

number of quasiparticles in the bulk, one of which is coupled

FIG. 3. The amplitude of the interference term for fixed applied voltage e�V�vn /2xa as a function of bulk-edge coupling �. � and e�V
are measured in units of vn /2xa. The left panel is away from a nodal point; the amplitude asymptotes its large � value at ��vn /2xa. This
represents the behavior of the envelope of the interference term; it agrees with the numerical calculation of Ref. 20. The right panel is for
V near a nodal point in Iint and the amplitude varies nonmonotonically with � because the nodes move as � is varied.
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to the edge. The resulting dynamics was mapped in the
folded formalism to the flow from free to fixed boundary
condition in the semi-infinite critical 2D Ising model. This
flow is accompanied by a loss of boundary entropy equal to
ln�2. On the other hand, in the case of an even number of
quasiparticles in the bulk, one of which is coupled to the
edge, the dynamics maps to the flow from fixed to free
boundary condition. This would be accompanied by an en-
tropy increase in ln�2 and would not be allowed, if it were
not for the fact that an even number of bulk quasiparticles
supports a topological qubit which is lost as a result of bulk-
edge coupling. This is accompanied by an entropy loss of ln
2 so that there is a net loss of ln�2. This is the same phe-
nomenon as occurs in the two-channel Kondo problem with
the topological qubit playing the role of the Kondo spin. At a
qualitative level, the difference is that, in the case of an even
number of quasiparticles in the absence of bulk-edge cou-
pling, interference is observed, with a phase which is deter-
mined by the combined topological state of the quasiparticles
in the bulk. For instance, when there are two quasiparticles
in an interference loop, they form a qubit �or half a qubit, if
four quasiparticles with total topological charge 1 are used to
represent a qubit�.38,39 Bulk-edge coupling then leads to er-
rors in this qubit and, over long enough time scales, to the

disappearance of this qubit and the loss of the quantum in-
formation contained in it as one of the bulk quasiparticles is
absorbed by the edge. This nonequilibrium problem will be
the subject of a separate work.

Recently, it has come to our attention that B. Rosenow, B.
Halperin, S. Simon, and A. Stern obtained results40 similar to
ours but by a different method. The relation of their results to
ours can be seen using the following identity between con-
fluent hypergeometric functions and modified Bessel func-
tions.

U�n + 1/2,1,y� = ey/2Kn�y/2�/�� .
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APPENDIX A: METHOD OF CHATTERJEE AND
ZAMOLODCHIKOV

As a consequence of the mapping introduced in Sec. IV,
we can reduce the problem of finding the interference term in
the current backscattered in the interferometer to that of find-
ing ��1�z , z̄��h with z , z̄ independent variables. Following
Chatterjee and Zamolodchikov,18 we note that Eqs. �17� im-
ply that


�t +
ih2

2vn
��1R�0,t� = 
�t −

ih2

2vn
��1L�0,t� . �A1�

Thus, the combination on the right-hand side of Eq. �A1� is
the continuation of the left-hand side, simply reflected back
by x=0, analogous to �R�0�=�L�0� for free boundary condi-
tion. Chatterjee and Zamolodchikov18 observe that this fact,
which can be written in complex notation as

	��z + i���1R − ��z̄ − i���1L
z=z̄ = 0, �A2�

where �=h2 /2vn
2, allows them to treat ��z+ i���1R as a free

field unaffected by the boundary interaction.
Now, consider the quantity ��1R�z�	1�w , w̄��, where

	1�w , w̄� is the disorder operator dual to �1�w , w̄�

�R�z� · �1�w,w̄� =



�2
	1�w,w̄� + . . . �A3�

For fixed boundary condition, ��1R�z�	1�w , w̄�� can be de-
duced by scaling and the requirement of square-root branch
points at w and w̄

��1R�z�	1�w,w̄��fixed =
�w − w̄�3/8

�z − w�1/2�z − w̄�1/2 . �A4�

Thus, for fixed boundary condition

20 40 60 80 100
Vs0.2

0.4

0.6

0.8

1
IB

FIG. 4. The backscattered current IB �normalized by its maxi-
mum value� as a function of sidegate voltage Vs �in mV�, assuming
that there is an odd number of e /4 quasiparticles in the interference
loop, one of which is close to the edge. The bulk-edge coupling is
assumed to vary with sidegate voltage as h=h0ebVs while the flux
through the loop varies as ��=c�Vs. A contribution to the current
from charge e /2 quasiparticles is also included.
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FIG. 5. If we assume that h increases more sharply with Vs, e.g.,

h=h0ebVs
2
, then the apparent disappearance of e /2 oscillations as h

increases with Vs is even more dramatic.
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���z + i���1R�z�	1�w,w̄��fixed�z − w�1/2�z − w̄�1/2 =
A�w,w̄�
z − w

+
Ā�w,w̄�
z − w̄

+ B�w,w̄� �A5�

holds for arbitrary � with

A�w,w̄� = Ā�w,w̄� = iB�w,w̄�/2� = −
1

2
�w − w̄�3/8. �A6�

For free boundary condition, ��1R�z�	1�w , w̄�� vanishes by
fermion number parity so Eq. �A5� holds trivially with

A�w , w̄�= Ā�w , w̄�=B�w , w̄�=0. For nonzero h, Eq. �A5�
must hold for the special value �=� since ��z+ i���1R�z� is a
free field, i.e., this correlation function’s only singularities
are square-root branch points at w and w̄

��R�z�	1�w,w̄��h�z − w�1/2�z − w̄�1/2 =
A�w,w̄�
z − w

+
Ā�w,w̄�
z − w̄

+ B�w,w̄� , �A7�

where

�R�z� � ��z + i���1R�z� �A8�

but A�w , w̄� and Ā�w , w̄�. However, B�w , w̄� in Eq. �A7� will
no longer have their free field forms Eq. �A6�. In the z→w
limit, Eq. �A7� becomes

��R�z�	1�w,w̄��h = �z − w�−3/2 A�w,w̄�
�w − w̄�1/2

−
1

2
�z − w�−1/2 A�w,w̄�

�w − w̄�3/2

+
3

8
�z − w�1/2 A�w,w̄�

�w − w̄�5/2

+ �z − w�−1/2 Ā�w,w̄�
�w − w̄�3/2

−
3

2
�z − w�1/2 Ā�w,w̄�

�w − w̄�5/2

+ �z − w�−1/2 B�w,w̄�
�w − w̄�1/2

−
1

2
�z − w�1/2 B�w,w̄�

�w − w̄�3/2 . �A9�

On the other hand, the operator product expansion of
�R�z����z+ i���1R�z� with 	1�w , w̄� is determined by the
short-distance properties of the theory, i.e., 	1 is still simply
the operator which creates a branch cut for �1R, even in the
presence of a boundary magnetic field. Thus, this one-pion
exchange �OPE� can be computed using S0

�R�z� · 	1�w,w̄� =

̄

�2
��z − w�−3/2�−

1

2
�1�w,w̄��

+ �z − w�−1/2�2�w + i���1�w,w̄� + �z − w�1/2

��4�w
2 + 4i��w��1�w,w̄� + . . .� , �A10�

where 
=ei�/4.
Taking the ground-state expectation values of both sides

of Eq. �A10� and comparing corresponding powers of z−w
with Eq. �A9� leads to the equations

A�w,w̄�
�w − w̄�1/2 =


̄

�2
�−

1

2
��1�w,w̄��� , �A11�

−
1

2

A�w,w̄�
�w − w̄�3/2 +

Ā�w,w̄�
�w − w̄�3/2 +

B�w,w̄�
�w − w̄�1/2 =


̄

�2
	�2�w + i��

���1�w,w̄��
 , �A12�

3

8

A�w,w̄�
�w − w̄�5/2 −

3

2

Ā�w,w̄�
�w − w̄�5/2 −

1

2

B�w,w̄�
�w − w̄�3/2 =


̄

�2
	�4�w

2

+ 4i��w���1�w,w̄��
 . �A13�

Substituting Eq. �A11� into Eq. �A12�, leads to

B�w,w̄� +
Ā�w,w̄�
�w − w̄�

=

̄

�2
�w − w̄�1/2
2�w + i� −

1

4

1

w − w̄
�

���1�w,w̄�� �A14�

and substituting Eq. �A14� into Eq. �A13� leads to

−
Ā�w,w̄�

�w − w̄�5/2 =

̄

�2
�w − w̄�1/2�4�w

2 + 4i��w +
1

w − w̄
�w

+
1

2
i�

1

w − w̄
−

1

16

1

�w − w̄�2���1�w,w̄�� .

�A15�

Proceeding in a precisely analogous manner, similar equa-
tions can be derived for the OPE and correlation function of
�L�z̄����z̄− i���1L�z̄� and 	1�w , w̄�, from which it follows
that

Ā�w,w̄�
�w̄ − w�1/2 =




�2
�−

1

2
��1�w,w̄��� , �A16�

B�w,w̄� +
A�w,w̄�
w̄ − w

=



�2
�w̄ − w�1/2
2�w̄ − i� −

1

4

1

w̄ − w
�

���1�w,w̄�� , �A17�
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−
A�w,w̄�

�w̄ − w�5/2 =



�2
�w − w̄�1/2�4�w̄

2 − 4i��w̄ +
1

w̄ − w
�w̄

−
1

2
i�

1

w − w̄
−

1

16

1

�w − w̄�2���1�w,w̄�� .

�A18�

Eqs. �A11� and �A16� imply that A�w , w̄�=−Ā�w , w̄�. This
relation allows us to take the difference between Eqs. �A14�
and �A17� to find

��w + �w̄���1�w,w̄�� = 0. �A19�

Chatterjee and Zamolodchikov18 specialize to the case w=
−w̄= ix but this is not necessary. At no point in the preceding
derivation, leading to Eqs. �A14�, �A15�, �A17�, and �A18�,
do we need w= �w̄��. Thus, we can take w=vn�0+ ixa and w̄
=vn�− ixa. Then, w+ w̄=vn��+�0� so that Eq. �A19� states
that the correlation function is time-translation invariant, as
expected. Hence, without loss of generality, we can set �0
=0 so that w= ixa and w̄=vn�− ixa.

Since the correlation function is independent of w+ w̄, we
can rewrite Eq. �A11� as an ordinary differential equation in
terms of the scaling variable y=−i��w− w̄�=��2xa+ ivn��

�− 4�y
2 + 
4 −

1

y
��y + 
 1

2y
− 9

16

1

y2����1�y�� = 0.

�A20�

We warn the reader that there is a typo in Ref. 18, where 1 /y
appears instead of 1 /2y in the third term.

If we let ��1�y���y3/8f�y�, then

yf� + �1 − y�f� −
1

2
f = 0. �A21�

This is Kummer’s equation, yf�+ �b−y�f�−af =0, with a= 1
2

and b=1. It has two linearly independent solutions. The con-
fluent hypergeometric function �or Kummer’s function� of
the first kind, denoted by 1F1�a ,b ,y� or M�a ,b ,y�, diverges
exponentially for large y. The other solution is the confluent
hypergeometric function �or Kummer’s function� of the sec-
ond kind, denoted by U�a ,b ,y�. When Re�y��0, it has the
integral representation

U�a,b,y� =
1

��a��0




dte−tyta−1�1 + t�b−a−1. �A22�

The confluent hypergeometric functions are singular at y
=0,
 and can be defined elsewhere in terms of formal power
series.

From the integral representation Eq. �A22�, we see that
U�a ,b ,y� decays as 1 /ya for large y. Hence, this is the ap-
propriate solution for ��1�y��, leading to ��1�y��= �const.�
�y3/8U� 1

2 ,1 ,y�. The constant is fixed18 by matching to the
lowest-order perturbative calculation so that it agrees for
small y with, for example, Refs. 13 and 20

��1�w,w̄�� = �1/221/4y3/8U
1

2
,1,y� , �A23�

where y=−i��w− w̄�.

APPENDIX B: CONTINUOUS NEUMANN AND
CONTINUOUS DIRICHLET FIXED POINTS

The crossover discussed in this paper can also be formu-
lated in terms of an Ising model with a defect line rather than
a boundary.17 According to this alternative mapping, the top
and bottom edges become the left- and right-moving sectors
of the Ising model. The “defect line” is the middle of the
device, x=0, where we have put a bulk quasiparticle. There
are quotation marks in the previous sentence because it may
not be clear that there is actually a defect at x=0 until one
considers the fact that the correlation function between the
tunneling operators at the two point contacts �Ta�0�Tb

†����,
translates to the correlation between two Ising spin operators,
one to the left and one to the right of the defect,
���x ,0���x� ,��� with xx��0. �Note that we have formed
nonchiral Ising spins in a different way than we did in Sec.
IV; they are formed from chiral fields on opposite edges.�
With a quasiparticle in the bulk �which we have not yet
coupled to the edge�, this correlation function vanishes.
Thus, the defining feature of the defect line is that this cor-
relation function vanishes but correlation functions of spin
fields all of which are to the right of the defect line or all of
which are to the left of the defect line are precisely the same
as if there were no defect, as if there were no bulk quasipar-
ticle.

This defect line doesn’t have a simple interpretation in the
classical 2D Ising model, but it does in the �1+1�-D trans-
verse field Ising model, where it corresponds to the quantum
Hamiltonian:41

H = − h�
n�0

�n
x − J�

n�0
�n−1

z �n
z − J��−1

z �0
x �B1�

with h=J in order to tune to criticality and, for the moment,
we specialize to J�=J. At the critical point, we can take the
continuum limit, with x=na, where a is the lattice spacing.
The Hamiltonian �B1� has the aforementioned property,
���x ,����x� ,����=0 for xx��0, since it is obtained from the
usual critical �1+1�-D transverse field Ising model by per-
forming a duality transformation

�n
z → 	m

z = �
0�m�n

�n
x ,

�n
x → 	n

x = �n
z�n+1

z �B2�

on only half of the chain, n�0. Thus, the correlation func-
tion ���x ,����x� ,����=0 with xx��0 is equal to
�	�x ,����x� ,����=0 in the ordinary critical �1+1�-D
transverse-field Ising model. The latter correlation function,
between an order and a disorder field, vanishes.

In fact, this property holds all along the fixed line ob-
tained by varying J�, which was dubbed the continuous Neu-
mann line in Ref. 41. As discussed in Ref. 17, varying J�
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corresponds to pinching the quantum-Hall bar so that inter-
edge backscattering of Majorana fermions �but not of
charged quasiparticles� can occur at x=0. When Majorana
fermions are also allowed to tunnel from the edges to the
bulk e /4 quasiparticle at x=0, the system flows from the
continuous Neumann line to the continuous Dirichlet line, at
which the bulk e /4 quasiparticle at x=0 has been absorbed
by the edge�s�. The continuous Dirichlet line is described by
the critical transverse-field Ising model with one bond
weakened/strengthened

H = − h�
n�0

�n
x − J�

n�0
�n−1

z �n
z − J̃�−1

z �0
z . �B3�

In this paper, we consider the special case in which there
is no constriction at x=0 so that there is no interedge back-
scattering of Majorana fermions at x=0. Furthermore, the
bulk e /4 quasiparticle at x=0 is close to only one edge.
Thus, our flow is a special case of the continuous Neumann
to continuous Dirichlet flow discussed in Refs. 17 and 41.
The combination of Ising correlation functions which enters
the formula �22� for the current is simply ���x ,����−x ,����
=0. The nice feature of this formulation is that it refers only
to explicitly single-valued correlation functions in a per-
turbed version of Eq. �B1�.
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